

## **Dallam School**

Curriculum Overview

**Department: A-level Product Design** 

Year Group: 12

| AUTUMN                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                           | SPRING                                                                                                                                                                                                                                       |                                                                                                                                                                                                       | SUMMER                                                                                                                                                                              |                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Half term 1                                                                                                                                                                                                                                                                  | Half term 2                                                                                                                                                                                                               | Half term 3                                                                                                                                                                                                                                  | Half term 4                                                                                                                                                                                           | Half term 5                                                                                                                                                                         | Half term 6                                                                                                                                                     |
| Half term 1  Designing and Making Principles (Paper 2)  Design methods and processes Design theory Technology and cultural changes Design processes Critical analysis and evaluation Selecting appropriate tools, equipment and processes Accuracy in design and manufacture | Half term 2  Technical Principles (Paper 1)  Materials and their applications Testing materials Performance characteristics of materials: Polymers Metals Timber Smart Materials Papers and Boards                        | Half term 3  Designing and Making Principles (Paper 2)  Responsible design Design for manufacture Product Life Cycle  Technical Properties (Paper 1)  Enhancement of materials Forming, redistribution The use of finishes                   | Technical Principles (Paper 1)  Design communication Scales of Production  Designing and Making Principles (Paper 2)  Design processes iterative design in commercial contexts  Introduction to NEA — | Half term 5  Designing and Making Principles (Paper 2)  National and international standards in product design  NEA — Environment/Site study Existing Solutions Brief and Objective | Technical Principles (Paper 1)  Modern and industrial commercial practice Digital design and manufacture  NEA – Research Plan User/Client Profile Materials and |
| Skills Project: Emergency Shelters (Research, Design skills and Prototype Manufacture)                                                                                                                                                                                       | Composites Polymer based sheet and film Biodegradable polymers Modern materials  Skills Project: Emergency Shelters (Research, Design skills and Prototype Manufacture)  CAD Development 2D Design – Winter small project | Modern and industrial commercial practice Digital design and manufacture Product design and development Health and safety Design for manufacturing, maintenance, repair and disposal Enterprise and marketing in the development of products | Context Analysis Feasability Plan User/Client Interviews                                                                                                                                              |                                                                                                                                                                                     | Manufacture Anthropometrics and Ergonomics                                                                                                                      |

By the end of this half term pupils will know (key knowledge, including tier 3 vocabulary)

Students should be aware of, and able to explain, different approaches to user centred design. That in approaching a design challenge there is not a single process, but that good design always addresses many issues

Students should be aware of, and able to discuss, how key historical design styles, design movements and influential designers that have helped to shape product design and manufacture.

Students should be aware of, and be able to discuss, the work of influential designers and how their work represents the principles of different design movements

market research
interviews
human factors
focus groups
product analysis and
evaluation
the use of anthropometric data
and percentiles
the use of ergonomic data
arts and craft movement
Art Deco
Modernism, eg Bauhaus
Post modernism, eg Memphis.

Students are expected to be able to name specific materials for a wide range of applications.

They must also be able to provide detailed and justified explanations of why specific materials and combinations of materials are suitable for given applications, with reference to:

physical and mechanical properties (working characteristics) product function aesthetics cost manufacture and disposal.

Students should know and understand the classifications of materials and be able to name examples that belong to each category – metals, woods, polymers, papers and boards, smart materials and modern materials

Students should be able to describe how workshop and industrial tests are set up and what will be tested, measured and compared.

Students should be able to describe the performance

Students are expected to be able to describe enhancement methods for given materials and explain their suitability for specific product applications.

Students should be aware of the ways that different materials can be shaped into different products such as packaging.

Students should be aware of how jigs and fixtures can be used to aid the manufacture of products.

They should be able to describe them and explain their suitability for accurate and repeated manufacture of products.

Students should be aware of the ways different materials can be finished to enhance their appearance or for improved function.

Students should be aware of, and able to explain, health and safety procedures related to products and manufacturing

Tier 3 Vocab:

- die cutting
- laser cutting
- creasing
- bending
- vacuum forming

Students should be aware of, and be able to describe, the different scales of production giving example products and specific manufacturing methods.

Students must develop an awareness of the relationship between material cost, form, and manufacturing processes, and the scale of production.

The development of designs which use materials economically and with regard to their characteristics.

The use of manufacturing processes which increase accuracy and reduce waste.

The savings to be gained when comparing bulk production with one-off production.

The advantages of Just In Time (JIT) manufacture.

Students should be aware of, and able to explain and demonstrate the skills, in a range of communication and presentation techniques for conveying proposals and intentions to clients, potential users and manufacturers

Students should be aware of, and able to discuss, how socio economic influences have helped to shape product design and manufacture

Students should be aware of, and able to discuss, how major developments in

Students should be aware of, and able to discuss and demonstrate. good and safe working practices, including: the importance of using the correct tools and equipment for specific tasks the importance of ensuring their own safety and that of others when in a workshop situation how designs are developed from a single prototype into mass produced products the effect on the manufacturing process that is brought about by the need for batch and mass manufacture how to select the most appropriate manufacturing process to be able to realise their, or others', design proposals the importance of health and safety in a commercial setting including workforce training and national safety standards.

Students should be aware of, and able to discuss and demonstrate, the importance of accuracy in manufacturing, whatever the scale of production, including: how testing can eliminate errors Students should be aware of, and be able to describe the advantages and disadvantages of using CAD compared to a manually generated alternative

The use of CAD to develop and present ideas for products, including: the use of 2D CAD for working drawings the use of 3D CAD to produce presentation drawings how CAD is used in industrial applications.

Students should be aware of, and be able to describe, how CAM is used in the manufacture of products.

Tier 3 Vocab:

- laser cutting
- routing
- milling
- > turning
- plotter cutting

| characteristics of al |
|-----------------------|
| materials studied.    |

## Tier 3 Vocab:

- Ferrous
- Non-ferrous
- Hardwoods
- Softwoods
- Manufactured boards
- Alloys
- Thermoplastics
- Thermoset polymers
- Elastomers
- Composites
- tensile strength
- toughness
- hardness
- malleability
- corrosion
- conductivity
- grain pattern
- grain direction
- surface defects
- warpage
- shrinkage
- splitting
- joining
- > forming
- steam bending
- laminating
- machining qualities
- resistance to decay
- moisture resistance
- > toxicity.

- thermoforming
- calendaring
- line bending
- laminating (layup)
- injection moulding
- blow moulding
- rotational moulding
- extrusion
- compression moulding.
- Knock-down fittings
- electro-plating
- dip coating
- powder coating
- galvanising
- copyright and design rights
- patents
- registered designs
- trademarks
- logos.

technology are shaping product design and manufacture Students should be aware of. and able to discuss, the responsibilities of designers and manufacturers, including: products are made using sustainable materials and ethical production methods the development of products that are: culturally acceptable not offensive to people of different race, gender or religious belief the development of products that are inclusive the design and manufacture of products that could assist with social problems, eg poverty, health and wellbeing,

Students should be aware of, and able to discuss and implement, the stages of a range of design processes in order to apply personal judgement and relevant criteria in the appraisal of products and systems

migration and housing

design and consumer

designing products to

consider the six Rs of

demand

sustainability.

the impact of Fairtrade on

## Tier 3 Vocab:

- > one-off, bespoke
- batch production
- mass/line production
- unit production systems (UPS)

the value in the use of measuring aids, eg templates, jigs and fixtures in ensuring consistency of accuracy and the reduction of possible human error.

Students should be aware of, and able to discuss, the importance of national and international standards in product design, including: British Standards Institute (BSI) International Organisation for Standardisation (ISO) Restriction of Hazardous Substances (ROHS) directive battery directive polymer codes for identification and recycling packaging directives WEEE directives energy ratings of products eco-labelling

- Total Quality Management (TQM
- Six sigma
- Prototypes
- ProductionDestructive
- testing
- Non-destructive testing
- BritishStandards

|                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>quick response manufacturing (QRM)</li> <li>vertical in-house production.</li> <li>micro electronics</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                         |                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| They will understand (key conce) The design methods used in industry, history of design including technological advancements and cultural and socio-economic impact of design.  The correct tools to use in design especially for accuracy in manufacture.  How to avoid design fixation and be an innovative designer.  Developing workshop skills | Materials including papers/boards, timbers, metals, polymers and their applications. The properties and characteristics of these materials and how they are tested,  Prototype skills  2D Design (CAD) | What is the Product Life Cycle How to design responsibly – impact on people, the environment How are different materials shaped and formed.  Manufacture in industry – enterprise and marketing                                                                                                                                                                                                                                                        | What different ways are there to communicate designs  What is iterative design  What are the different scales of production and when are they used. What is the advantages and disadvantages of them  How do designers decide what problems to solve in design and what is the research and development method                                                                                                                                                                                                                            | What are the different legislations designers and manufacturers have to adhere to                                                       | What is digital design and manufacture           |
| Apply knowledge and understanding of computing facts, terms, standards, concepts and processes to real-life scenarios Command words: calculate, complete, demonstrate, describe, draw, explain, produce Select and use computing technologies and procedures to explore likely outcomes and find solutions to problems in context.                  | You will be able to analyse complex information, data and situations, in vocational contexts, in order to draw conclusions and make valid observations.                                                | Unit 2 You will be are able to synthesise knowledge and understanding of computing to deconstruct problems, drawing on various sources of information to develop effective solutions with justification. Unit 7 Explain the different security threats that can affect the IT systems of organisations. Explain the principles of information security when protecting the IT systems of organisations. Explain why organisations must adhere to legal | Unit 2 You will be able to able to evaluate the effectiveness of computer systems to make justified recommendations on their development and future actions that can be taken. Unit 7 Assess the impact that IT security threats can have on organisations' IT systems and business whilst taking account of the principles of information security and legal requirements. Analyse how the principles and uses of cryptography affects the security and protection of data. Evaluate the effectiveness of the techniques used to protect | Apply thinking skills involved in analysing problems and processes, to identify solutions that can be developed into computer programs. | Techniques used to design solutions to problems. |

| requirements when          | organisations from security      |  |
|----------------------------|----------------------------------|--|
| considering IT system      | threats whilst taking account    |  |
| security.                  | of the principles of information |  |
| Explain the principles and | security and legal               |  |
| uses of cryptography to    | requirements.                    |  |
| secure and protect data.   |                                  |  |



## **Dallam School**

**Curriculum Overview** 

**Department: A-level Product Design** 

Year Group: 13

| AUTUMN                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                       | SPRING                                                                                                                                                                               |                                                                                             | SUMMER                                                                                         |             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------|
| Half term 1                                                                                                                                                                                                                                                                                                                                               | Half term 2                                                                                                                                           | Half term 3                                                                                                                                                                          | Half term 4                                                                                 | Half term 5                                                                                    | Half term 6 |
| Technical Principles (Paper 1)  The requirements for product design and development Protecting designs and intellectual property Design for manufacturing, maintenance, repair and disposal Feasibility studies Enterprise and marketing in the development of products Modern manufacturing systems  NEA — Health and Safety Specification Initial Ideas | NEA –  Design development Modelling/Prototypes Final Design CAD Manufacture                                                                           | NEA – Manufacture Manufacturing plan Gantt Chart Cutting list Comparison to specification Modifications and Improvement Client Feedback Strengths and Weaknesses HAND IN EASTER 2023 | Revision for Exam  Paper 1 Technical Principles and Paper 2 Designing and Making Principles | Revision for Exam  Paper 1 Technical  Principles and Paper 2  Designing and Making  Principles |             |
| By the end of this half term pupi                                                                                                                                                                                                                                                                                                                         | · · · · · · · · · · · · · · · · · · ·                                                                                                                 |                                                                                                                                                                                      | T                                                                                           |                                                                                                |             |
| Students must develop an awareness of the relationship between material cost, form, and manufacturing processes, and the scale of production.  The development of designs which use materials economically and with regard to their characteristics.                                                                                                      | Students will be able to develop designs through CAD, modelling and sketching  Creating a final design  Manufacturing methods  Plan view Orthographic | Manufacturing methods  Being able to self-analyse own design and identify strengths and weaknesses  To be able to liase with a client and gain feedback and criticism.  Strengths    |                                                                                             |                                                                                                |             |

| The use of manufacturing processes which increase accuracy and reduce waste. The savings to be gained when comparing bulk production with one-off production. The advantages of Just In Time (JIT) manufacture.  Students should be aware of, and be able to describe, how virtual modelling/testing is used in industry prior to product production. | Isometric CAD Render Dimensions Joints Finish                                                                                                                                        | Weaknesses Skills Evaluate Time management Tolerance Accuracy                                                                                             |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Tier 3 Vocab:                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                      |                                                                                                                                                           |  |  |
| <ul> <li>⇒ simulation</li> <li>⇒ computational fluid dynamics (CFD) as used for testing aerodynamics and wind resistance, and flow of liquids within/around products</li> <li>⇒ finite element analysis (FEA) as used in component stress analysis.</li> </ul>                                                                                        |                                                                                                                                                                                      |                                                                                                                                                           |  |  |
| They will understand (key conce                                                                                                                                                                                                                                                                                                                       | epts)                                                                                                                                                                                |                                                                                                                                                           |  |  |
| How do designers protect their designs and intellectual property.  How are products designed to be repaired, or for disposal                                                                                                                                                                                                                          | Be able to use their prior knowledge of different methods of prototyping  Modelling designs and gaining and acting upon feedback from a client  How to use CAD effectively in design | How to write a manufacturing plan and the need for accurate detail  How and why manufacturers use cutting lists  Self- analysis of design and manufacture |  |  |

| They will know how to (key skills                                                                                                                                                                          |                                                                       |                          |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------|--|--|
| Be innovative in design and                                                                                                                                                                                | Develop and adapt                                                     | Write a cutting list and |  |  |
| protect designs from copyright                                                                                                                                                                             | prototypes                                                            | manufacturing plan       |  |  |
| Think about sustainability in design, so that products can be repaired or separated easily for recycling  To write a specification based upon research  How to avoid design fixation when creating designs | Design and develop using CAD  Liase with a client to meet their needs |                          |  |  |