	Dallam School Mathematics Curriculum Overview			Department: AS Level Further Mathematics Year Group: 12	
Year 1 - Pure and Decision					
AUTUMN		SPRING		SUMMER	
Half term 1	Half term 2	Half term 3	Half term 4	Half term 5	Half term 6
Theme / Topic Complex Numbers Argand Diagrams	Theme / Topic Matrices	Theme / Topic Linear Transformations	Theme / Topic Series Proof by Induction	Theme / Topic Algorithms Graphs and Networks Algorithms on Graphs	Theme / Topic Route Inspection Linear Programming Critical Path Analysis
By the end of this half term pupils will know (key knowledge, including tier 3 vocabulary)					
Imaginary numbers and complex numbers Multiplication of complex numbers Complex conjugates > Roots of quadratic equations Solving cubic and quartic equations > Argand diagrams $>$ Modulus and argument > Modulus-argument form of complex numbers Loci in the Argand diagram Regions in the Argand diagram	$>$ Matrix multiplication $>$ Determinants $>$ The inverse of a 2×2 $>$ matrix $>$ The inverse of a 3×3 $>$ matrix Solving systems of equations using matrices	Linear transformations in two dimensions Reflections and rotations Enlargements and stretches Successive transformations Linear transformations in three dimensions The inverse of a linear transformation	Proof by mathematical induction Proving divisibility Proving statements involving matrices	Using and understanding algorithms > Flow charts > Bubble sort > Quick sort $>$ Bin-packing $>$ Order of an algorithm > Modelling with graphs > Graph theory > Special types of graphs $>$ Representing graphs and networks using matrices > Kruskal's algorithm > Prim's algorithm > Applying Prim's algorithm to a distance matrix Using Dijkstra's algorithm to find the shortest path	Eulerian graphs Using the route inspection algorithm Linear programming problems > Graphical methods > Locating the optimal point $>$ Solutions with integers values > Modelling a project $>$ Dummy activities $>$ Early and late event times > Critical activities > The float of an activity > Gantt charts

> Understand the terms 'real part' and 'imaginary part'
> Understand the complex conjugate.
> Know that non-real roots of polynomial equations with real coefficients occur in conjugate pairs
> Interpret Argand diagrams.
> Interpret simple loci in the Argand diagram such as $|z-a|>r$ and $\arg (z-a)=\theta$.

Understand zero and identity matrices.
> Calculate
determinants of 2×2 and 3×3 matrices
> Understand singular and non -singular matrices.
> Properties of inverse matrices.
> Interpret geometrically the solution and failure of solution of three simultaneous linear equations.
> Understand the relationship between matrices and linear transformations
> Identify linear transformations from their matrix
> Understand and use formulae for the sums of integers, squares and cubes
> Contexts include sums of series, divisibility and powers of matrices
> Understand proofs using mathematical induction
> Understand what an algorithm is
> Understand the method behind different types of algorithms
> Understand how to perform different types of sorts
> Understand what an Eulerian graph is
> Understand different graph theory terminology
> Understand the reasoning for a linear programming problem

- Understand what the optimal point represents
$>$ be able to solve any quadratic equation with real coefficients;
> be able to add, subtract and multiply complex numbers in the form $x+$ iy with x and y real;
> understand and use the terms 'real part' and 'imaginary part'.
> be able to use and interpret Argand diagrams.
> be able to convert between the Cartesian form and the modulusargument form of a complex number;
> be able to multiply and divide complex numbers in modulus-argument form.
> be able to construct and interpret simple loci in
be able to find the dimension of a matrix;
> be able to add and subtract matrices of the same dimension;
$>$ be able to multiply a matrix by a scalar;
be able to multiply conformable matrices.
> be able to calculate determinants of 2×2 and 3×3 matrices;
$>$ understand and use singular and nonsingular matrices;
> be able to know the properties of inverse matrices;
> be able to calculate the inverse of nonsingular 2×2 and 3×3 matrices.
be able to use matrices to represent 2D rotations, reflections, enlargements and translations;
> understand and use zero and identity matrices;
$>$ be able to use matrix products to represent combinations of transformations;
\Rightarrow be able to use matrices to represent linear transformations in three dimensions;
> be able to use inverse matrices to reverse the effect of a linear transformation;
$>$ be able to use the determinant of a matrix to determine the area scale factor of a
$>$ be able to trace an algorithm in the form of a flow chart;
$>$ be able to trace an algorithm given as instructions written in text;
> know how to determine the output of an algorithm and how it links to the input;
$>$ be able to determine the order of a given algorithm and standard network problems.
> know how to apply a bubble sort algorithm to a list of numbers or words;
> know how to apply the quick sort algorithm to a list of numbers or words, clearly identifying the pivots used for each pass;
> be able to identify the number of
> be able to determine whether a graph is traversable;
> be able to apply an algorithm to solve the route inspection problem;
$>$ find a route by inspection;
> understand the importance of the order of vertices of the graph in finding a route.
> know how to formulate a linear programming problem from a real-life problem (write inequalities from worded questions);
$>$ be able to form an appropriate objective function to maximise or minimise.
> know how to represent a linear programming problem graphically
the Argand diagram such as $|z-a|>r$ and $\arg (z-a)=\theta$.
$>$ understand and use the complex conjugate of a complex number;
$>$ be able to divide two complex numbers by using the complex conjugate of the denominator;
$>$ be able to use matrices and their inverses to solve linear simultaneous equations, including three linear simultaneous equations in three variables;
$>$ be able to interpret geometrically the solution and failure of solution of three simultaneous linear equations.
transformation;
$>$ be able to find invariant points and lines for a linear transformation.
comparisons and swaps used in a given pass;
> be able to identify size, efficiency and order of an algorithm and use them to make predictions;
$>$ know how to solve bin packing problems using full bin, first fit, and first fit decreasing algorithms, and understand their strengths and weaknesses.
> know the meaning of the vocabulary used in graph theory e.g. degree of a vertex, isomorphic graphs, walks, paths and cycles;
$>$ be familiar with different types of graph e.g. complete, planar, isomorphic, simple, connected;
$>$ understand graphs represented in matrix form;
> be familiar with k notation;
> know the definition of a tree;
$>$ be able to determine if a graph is Eulerian, semi-Eulerian or neither, and find Eulerian cycles.
$>$ understand the meaning of a minimum spanning tree;
> be able to apply Kruskal's algorithm to a
and identify the feasible region;
> be able to solve linear programming problems to find a maximum or minimum;
> be able to interpret solutions in the context of the original real life problem.
> be able to model a project by an activity network from a precedence table;
$>$ be able to complete a precedence table from a given network;
$>$ understand the use of dummies.
> know how to carry out a forward pass and backward pass using early and late event times;
$>$ be able to interpret and use dummies;
$>$ be able to identify critical activities and critical paths.
> know how to determine the total float of activities;
> be able to construct and interpret Gantt (cascade) charts.

Dallam School	Dallatics Mathematics Curriculum Overview	Department: AS Level Further Mathematics Year Group: 13

Year 2 - Pure and Statistics					
AUTUMN		SPRING		SUMMER	
Half term 1	Half term 2	Half term 3	Half term 4	Half term 5	Half term 6
Theme / Topic Roots of Polynomials Vectors	Theme / Topic Vectors Volumes of Revolution	Theme / Topic Discrete Random Variables Poisson Distribution	Theme / Topic Poisson Distribution Hypothesis Testing	Theme / Topic Chi-squared Testing	Theme / Topic END OF COURSE
By the end of this half term pupils will know (key knowledge, including tier 3 vocabulary)					
> Roots of a quadratic > Roots equation cubic > Roots of a quartic > Expressions relating to the roots of a polynomial > Linear transformations > of roots - Equation of a line in - Equation of a plane in three dimensions	Scalar product Calculating angles between lines and planes Points of intersection $>$ Finding perpendiculars Volumes of revolutiton around the x-axis Volumes of revolution around the y-axis Adding and subtracting $>$ volumes Modeling with volumes of revolution	$>$ Expected value of variable > Variance of a discrete random variable > Expected value and variance of a function of X > Solving problems involving random > The Poisson distribution > Modelling with the - Adding Poissoution distributions	a Poisson distribution the binomial distribution > Using the Poisson distribution to approximate the binomial distribution > Testing for the mean of - Finding critical regions for a Poisson distribution	Goodness of fit $>$ Degrees of freedom and the chi-squared family of distributions > Testing a hypothesis of fit with discrete data > Using contingency tables	END OF COURSE

> Understand and use the complex conjugate of a complex number
> Know that non-real roots of polynomial equations with real coefficients occur

- Understand the relationship between roots and coefficients of polynomial equations up to quartic equations.
> Be able to form a polynomial equation whose roots are a linear transformation of the roots of a given polynomial equation (of at least cubic degree).
> Understand the relationship between roots and coefficients of polynomial equations up to the quartic equations
> Form a polynomial equation whose roots are a linear transformation of the roots of a given polynomial equation (of at least cubic degree)
> Understand the vector and Cartesian forms of an equation of a straight line in 3D
> Understand the vector and Cartesian forms of the equation of a plane

Calculate the scalar product and use it to express the equation of a plane, and to calculate the angle between two lines, the angle between two planes and the angle between a line and a plane
> Check whether vectors are perpendicular by using the scalar product
> Understand the Cartesian forms of an equation of a straight line in three dimensions
> Understand the vector and Cartesian forms of the equation of a plane
> Understand how we derive formula for volumes of revolution
> Understand how to integrate to find a volume
$>$ Calculation of the discrete probability distributions
$>$ Extension of expected value function to include $\mathrm{E}(\mathrm{g}(X))$
$>$ Be able to use the Poisson distribution to model a real-world situation
> Know the conditions for a Poisson distribution
> Know the additive property of Poisson distributions
$>$ The mean and variance of the binomial distribution and the Poisson distribution

- The use of the Poisson distribution as an approximation to the binomial distribution
- Understand and be able to apply the language of statistical hypothesis testing
> Be able to carry out hypothesis tests to test for the mean of a Poisson distribution
$>$ Goodness of fit tests
> The null and alternative hypothesis
$>$ The use of $\sum n=(O \mathrm{i}-E \mathrm{i})$ 2 / $E i$ as an approximate x2 statistic
$>$ Degrees of freedom
> know that non-real roots of polynomial equations with real coefficients occur in conjugate pairs;
> be able to solve cubic or quartic equations with real coefficients.
> understand and use the relationship between roots and coefficients of polynomial equations up to quartic equations.
> be able to form a polynomial equation whose roots are a linear transformation of the roots of a given polynomial equation (of at least cubic degree).
$>$ know how to find the vector equation of a line in both two and three dimensions;
> understand and use the Cartesian forms of an equation of a straight line in three dimensions;
> understand and use the vector and Cartesian forms of the equation of a plane.
be able to find the scalar product of two vectors;
$>$ be able to check whether vectors are perpendicular by using the scalar product;
$>$ be able to use the scalar product to express the equation of a plane;
$>$ be able to use the scalar product to calculate the angle between two lines;
> be able to use the scalar product to calculate the angle between two planes;
$>$ be able to use the scalar product to calculate the angle between a line and a plane.
$>$ be able to find the points of intersection of lines and planes which meet;
$>$ be able to calculate the perpendicular distance between two lines;
$>$ be able to calculate the perpendicular distance from a point to a line or to a plane.
> be able to derive formulae for and calculate volumes of revolution about both
$>$ be able to calculate the mean and variance of discrete probability distributions using $\mathrm{E}(X)=\mu=\sum x \mathrm{P}(X=$ x) and $\operatorname{Var}(X)=\sigma^{2}=$ $\sum x^{2} \mathrm{P}(X=x)-\mu^{2}$;
$>$ know how to find the expectation of a function of a random variable.
\Rightarrow be able to use the Poisson distribution to model a real-world situation;
$>$ know the conditions for a Poisson distribution;
> be able to comment critically on the appropriateness of using the Poisson distribution as a model;
> know how to use calculators to calculate probabilities including cumulative probabilities;
$>$ know the additive property of Poisson distributions.
$>$ know how to find the mean and variance of the binomial distribution;
> know how to find the mean and variance of the Poisson distribution;
$>$ be able to solve problems involving the mean and variance of the binomial and Poisson distributions.
> be able to use the Poisson distribution as an approximation to the binomial distribution;
> know when it is appropriate to use the Poisson distribution as an approximation to the binomial distribution.
> understand and be able to apply the language of statistical hypothesis testing;
$>$ be able to carry out hypothesis tests to test for the mean of a Poisson distribution.
$>$ know and be able to use the process of a goodness of fit test;
$>$ know how to find the number of degrees of freedom of the expected values, including when one or more parameters are estimated from the data;
> be able to use $\sum_{i=1}^{n} \frac{\left(o_{i}-E_{i}\right)^{2}}{E_{i}}$ as an approximate χ^{2} statistic;
> be able to apply goodness of fit tests to include the discrete uniform, binomial and Poisson distributions;
> be able to show frequencies by means of a contingency table;
> know how to obtain p values from calculators;
> be able to use tables to find critical values.

END OF COURSE

