

Dallam School Mathematics Curriculum Overview

Department: AS Level Further Mathematics Year Group: 12

		Year 1 – Pure	and Decision		
AUTU	MN	SPF	RING	SUM	MER
Half term 1	Half term 2	Half term 3	Half term 4	Half term 5	Half term 6
Theme / Topic Complex Numbers Argand Diagrams	Theme / Topic Matrices	Theme / Topic Linear Transformations	Theme / Topic Series Proof by Induction	Theme / Topic Algorithms Graphs and Networks Algorithms on Graphs	Theme / Topic Route Inspection Linear Programming Critical Path Analysis
By the end of this half term pure Imaginary numbers and complex numbers	pils will know <i>(key knowledge,</i> Matrix multiplication Determinants	<i>including tier 3 vocabulary)</i> ▶ Linear transformations in two dimensions 	 Proof by mathematical induction 	 Using and understanding 	 Eulerian graphs Using the route
 complex numbers Multiplication of complex numbers Complex conjugates Roots of quadratic equations Solving cubic and quartic equations Argand diagrams Modulus and argument Modulus-argument form of complex numbers Loci in the Argand diagram Regions in the Argand diagram 	 Determinants The inverse of a 2x2 matrix The inverse of a 3x3 matrix Solving systems of equations using matrices 	 In two dimensions Reflections and rotations Enlargements and stretches Successive transformations Linear transformations The inverse of a linear transformation 	 Proving divisibility Proving statements involving matrices 	 understanding algorithms Flow charts Bubble sort Quick sort Bin-packing Order of an algorithm Modelling with graphs Graph theory Special types of graphs Representing graphs and networks using matrices Kruskal's algorithm Prim's algorithm Applying Prim's algorithm to a distance matrix Using Dijkstra's algorithm to find the shortest path 	 Using the route inspection algorithm Linear programming problems Graphical methods Locating the optimal point Solutions with integers values Modelling a project Dummy activities Early and late event times Critical activities The float of an activity Gantt charts

The	ey will understand (key conc	epts	5)								
	Understand the terms 'real part' and 'imaginary part'. Understand the complex conjugate. Know that non-real roots of polynomial equations with real coefficients occur in conjugate pairs Interpret Argand diagrams. Interpret simple loci in the Argand diagram such as $ z-a >r$ and $\arg(z-a)=\theta$.		Understand zero and identity matrices. Calculate determinants of 2×2 and 3×3 matrices Understand singular and non -singular matrices. Properties of inverse matrices. Interpret geometrically the solution and failure of solution of three simultaneous linear equations.	A .	Understand the relationship between matrices and linear transformations Identify linear transformations from their matrix	AAAA	Understand and use formulae for the sums of integers, squares and cubes Contexts include sums of series, divisibility and powers of matrices Understand proofs using mathematical induction		Understand what an algorithm is Understand the method behind different types of algorithms Understand how to perform different types of sorts		Understand what an Eulerian graph is Understand different graph theory terminology Understand the reasoning for a linear programming problem Understand what the optimal point represents
The	ey will know how to <i>(key skil</i>	ls)		1						1	
>	be able to solve any quadratic equation with	>	be able to find the dimension of a	>	be able to use matrices to represent 2D	۶	be able to use sigma notation	>	be able to trace an algorithm in the form of	>	be able to determine whether a graph is
	real coefficients;		matrix;		rotations, reflections,	\triangleright	understand and use		a flow chart;		traversable;
A A	be able to add, subtract and multiply complex numbers in the form $x + iy$ with x and y real; understand and use the	A A	be able to add and subtract matrices of the same dimension; be able to multiply a matrix by a scalar;	٨	enlargements and translations; understand and use zero and identity matrices;	A	formulae for the sums of integers, squares and cubes; be able to use known formulae to sum more	AA	be able to trace an algorithm given as instructions written in text; know how to determine the output of an	AA	be able to apply an algorithm to solve the route inspection problem; find a route by inspection;
	terms 'real part' and 'imaginary part'.	\checkmark	be able to multiply conformable	\blacktriangleright	be able to use matrix products to represent		complex series.		algorithm and how it links to the input;	≻	understand the importance of the order
A (be able to use and interpret Argand diagrams.	A	matrices. be able to calculate determinants of 2×2 and 2×2 matrices:	~	combinations of transformations; be able to use matrices			>	be able to determine the order of a given algorithm and standard network problems.	A	of vertices of the graph in finding a route. know how to formulate a linear programming
	be able to convert between the Cartesian form and the modulus- argument form of a	A	and 3x3 matrices; understand and use singular and non- singular matrices;	A	to represent linear transformations in three dimensions; be able to use inverse			•	know how to apply a bubble sort algorithm to a list of numbers or words;		problem from a real-life problem (write inequalities from worded questions);
7	complex number; be able to multiply and divide complex numbers in modulus-argument	A A	be able to know the properties of inverse matrices; be able to calculate	*	matrices to reverse the effect of a linear transformation; be able to use the			4	know how to apply the quick sort algorithm to a list of numbers or words, clearly	4	be able to form an appropriate objective function to maximise or minimise.
4	form. be able to construct and interpret simple loci in		the inverse of non- singular 2x2 and 3x3 matrices.		determinant of a matrix to determine the area scale factor of a			~	identifying the pivots used for each pass; be able to identify the number of	•	know how to represent a linear programming problem graphically

the Argand diagram such	be able to use	transformation;	comparisons and	and identify the
as $ z-a > r$ and	matrices and their	be able to find invariant	swaps used in a given	feasible region;
$\arg(z-a)=\theta.$	inverses to solve	points and lines for a	pass;	be able to solve linear
understand and use the	linear simultaneous	linear transformation.	be able to identify size,	programming problems
complex conjugate of a	equations, including		efficiency and order of	to find a maximum or
complex number;	three linear		an algorithm and use them to make	minimum;
be able to divide two	simultaneous		predictions;	be able to interpret
complex numbers by	equations in three			solutions in the context
using the complex	variables;		know how to solve bin packing problems	of the original real life problem.
conjugate of the	be able to interpret		using full bin, first fit,	
	•		and first fit decreasing	be able to model a project by an activity
denominator;	geometrically the		algorithms, and	project by an activity network from a
	solution and failure of		understand their	precedence table;
	solution of three		strengths and	-
	simultaneous linear		weaknesses.	be able to complete a precedence table from
	equations.		know the meaning of	a given network;
			the vocabulary used in	 understand the use of
			graph theory e.g.	dummies.
			degree of a vertex,	
			isomorphic graphs,	know how to carry out a farward page and
			walks, paths and	a forward pass and backward pass using
			cycles;	early and late event
			be familiar with	times;
			different types of graph	be able to interpret and
			e.g. complete, planar,	use dummies;
			isomorphic, simple,	 be able to identify
			connected;	critical activities and
			understand graphs	critical paths.
			represented in matrix	 know how to determine
			form;	the total float of
			be familiar with k	activities;
			notation;	 be able to construct
			know the definition of a	and interpret Gantt
			tree;	(cascade) charts.
			be able to determine if	
			a graph is Eulerian,	
			semi-Eulerian or	
			neither, and find	
			Eulerian cycles.	
			understand the	
			meaning of a minimum	
			spanning tree;	
			be able to apply	
			Kruskal's algorithm to a	

by dealing with multiple start points or a different end point.

Dallam School Mathematics Curriculum Overview

Department: AS Level Further Mathematics Year Group: 13

		Year 2 – Pure	and Statistics		
AUT	UMN	SPI	RING	SUM	MER
Half term 1	Half term 2	Half term 3	Half term 4	Half term 5	Half term 6
Theme / Topic Roots of Polynomials Vectors	Theme / Topic Vectors Volumes of Revolution	Theme / Topic Discrete Random Variables Poisson Distribution	Theme / Topic Poisson Distribution Hypothesis Testing	Theme / Topic Chi-squared Testing	Theme / Topic END OF COURSE
 By the end of this half term p Roots of a quadratic equation Roots of a cubic equation Roots of a quartic equation Expressions relating to the roots of a polynomial Linear transformations of roots Equation of a line in three dimensions Equation of a plane in three dimensions 	 bupils will know (key knowledge, Scalar product Calculating angles between lines and planes Points of intersection Finding perpendiculars Volumes of revolution around the x-axis Volumes of revolution around the y-axis Adding and subtracting volumes Modelling with volumes of revolution 	 including tier 3 vocabulary) Expected value of a discrete random variable Variance of a discrete random variable Expected value and variance of a function of X Solving problems involving random variables The Poisson distribution Modelling with the Poisson distribution Adding Poisson distributions 	 Mean and variance of a Poisson distribution Mean and variance of the binomial distribution Using the Poisson distribution to approximate the binomial distribution Testing for the mean of a Poisson distribution Finding critical regions for a Poisson distribution 	 Goodness of fit Degrees of freedom and the chi-squared family of distributions Testing a hypothesis Testing the goodness of fit with discrete data Using contingency tables 	END OF COURSE

The	ey will understand (key col	nce	ots)							
\succ	Understand and use	≻	Calculate the scalar	\triangleright	Calculation of the	\triangleright	The mean and	≻	Goodness of fit tests	END OF COURSE
	the complex conjugate		product and use it to		mean and variance of		variance of the	≻	Contingency Tables	
	of a complex number		express the equation		discrete probability		binomial distribution	\succ	The null and alternative	
\succ	Know that non-real		of a plane, and to		distributions		and the Poisson		hypothesis	
	roots of polynomial		calculate the angle	\succ	Extension of expected		distribution	\succ	The use of $\sum n = (Oi - Ei)$	
	equations with real		between two lines, the		value function to	\succ	The use of the Poisson		2 / Ei as an	
	coefficients occur		angle between two		include E(g(X))		distribution as an		approximate x2	
\succ	Understand the		planes and the angle	\succ	Be able to use the		approximation to the		statistic	
	relationship between		between a line and a		Poisson distribution to		binomial distribution	≻	Degrees of freedom	
	roots and coefficients of		plane		model a real-world	\succ	Understand and be		-	
	polynomial equations	\triangleright	Check whether vectors		situation		able to apply the			
	up to quartic equations.		are perpendicular by	\succ	Know the conditions for		language of statistical			
\succ	Be able to form a		using the scalar		a Poisson distribution		hypothesis testing			
	polynomial equation		product	\succ	Know the additive	\triangleright	Be able to carry out			
	whose roots are a	\triangleright	Understand the		property of Poisson		hypothesis tests to test			
	linear transformation of		Cartesian forms of an		distributions		for the mean of a			
	the roots of a given		equation of a straight				Poisson distribution			
	polynomial equation (of		line in three							
	at least cubic degree).		dimensions							
\succ	Understand the	\triangleright	Understand the vector							
	relationship between		and Cartesian forms of							
	roots and coefficients of		the equation of a plane							
	polynomial equations	\triangleright	Understand how we							
	up to the quartic		derive formula for							
	equations		volumes of revolution							
\triangleright	Form a polynomial		Understand how to							
	equation whose roots		integrate to find a							
	are a linear		volume							
	transformation of the									
	roots of a given									
	polynomial equation (of									
	at least cubic degree)									
\succ	Understand the vector									
	and Cartesian forms of									
	an equation of a									
	straight line in 3D									
\triangleright	Understand the vector									
	and Cartesian forms of									
	the equation of a plane									

\triangleright know that non-real roots of polynomial equations with real coefficients occur in conjugate pairs; \triangleright be able to check whether vectors are perpendicular by using the scalar product; \triangleright be able to use the relationship between roots and coefficients of polynomial equations up to quartic equations. \triangleright be able to find the scalar product of two vectors; \triangleright be able to check whether vectors are perpendicular by using the scalar product; \triangleright be able to use the scalar product to \triangleright be able to calculate the mean and variance of discrete probability distributions using $E(X) = \mu = \sum xP(X = x) - \mu^2$; \triangleright know how to find the expectation of a function of a random variable. \triangleright know how to find the mean and variance of the binomial distribution; \triangleright know how to find the mean and variance of the binomial distribution; \triangleright be able to use the scalar product to express the equation up to quartic equations. \triangleright be able to use the scalar product to express the equation of a plane; \triangleright be able to use the scalar product to \triangleright be able to use the express the equation of a plane; \triangleright be able to use the scalar product to \triangleright be able to use the Poisson distribution to model a real-world \triangleright know how to find the mean and variance of the binomial and Poisson distributions. \triangleright know how to find the mean and variance of the binomial and Poisson distributions. \triangleright know how to find the mean and variance of the binomial and Poisson distributions. \triangleright know how to find the mean and variance of the binomial and Poisson distributions. \triangleright know how to find the mean and variance of the binomial and Poisson distributions. \triangleright know how to find the mean and variance of<	They will know how to (key s
 be able to form a polynomial equation whose roots are a linear transformation of the roots of a given polynomial equation of a tleast cubic degree). be now how to find the vector equation of a line or form a points of intersection of a glane. be able to calculate the angle between two lines; be able to use the scalar product to calculate the angle between two planes; be able to use the scalar product to calculate the angle between aline and a three dimensions; be able to calculate the points of intersection of a line or three dimensions; be able to calculate the points of intersection of a plane. be able to calculate the propondities; be able to calculate the points of intersection of a plane. be able to calculate the propendicular distance from a point to a line or to a plane. be able to derive form a calculate of an aplane. 	 know that non-real roots of polynomial equations with real coefficients occur in conjugate pairs; be able to solve cubic or quartic equations with real coefficients. understand and use the relationship between roots and coefficients of polynomial equations up to quartic equations. be able to form a polynomial equation whose roots are a linear transformation of the roots of a given polynomial equation (of at least cubic degree). know how to find the vector equation of a line in both two and three dimensions; understand and use the Cartesian forms of an equation of a straight line in three dimensions; understand and use the vector and Cartesian forms of the equation of the equation of a straight line in three dimensions;

the x and y-axes.		
-------------------	--	--